The Number of Shareholders — Time Series Modelling and Some Empirical Results
نویسنده
چکیده
The paper discusses some model related issues for time series of the number of shareholders in a stock. The point of departure is an integer-valued autoregressive model of order one. Empirical results are presented for some frequently traded stocks on the Finnish and Swedish stock markets. In these stock markets public records of the number of owners are reported monthly (Finland) and quarterly (Sweden, and initially at biannual) intervals. The aggregate records are useful for, e.g., indirectly estimating average holding times, which are found to vary but to mostly exceed one year.
منابع مشابه
a Comparison Study Between the Joint Probability Approach and Time Series Rainfall Modelling in Coastal Detention Pond Analysis (RESEARCH NOTE)
In tidally affected coastal catchments detention pond should be provided to store flood surface water. A comparison between the full simulation approach based on the joint probability method and time series rainfall modeling via the annual maximum of pond level was undertaken to investigate the assumptions of independence between variables that are necessary in the joint probability method. The...
متن کاملTime series forecasting of Bitcoin price based on ARIMA and machine learning approaches
Bitcoin as the current leader in cryptocurrencies is a new asset class receiving significant attention in the financial and investment community and presents an interesting time series prediction problem. In this paper, some forecasting models based on classical like ARIMA and machine learning approaches including Kriging, Artificial Neural Network (ANN), Bayesian method, Support Vector Machine...
متن کاملAn Empirical Comparison of Distance Measures for Multivariate Time Series Clustering
Multivariate time series (MTS) data are ubiquitous in science and daily life, and how to measure their similarity is a core part of MTS analyzing process. Many of the research efforts in this context have focused on proposing novel similarity measures for the underlying data. However, with the countless techniques to estimate similarity between MTS, this field suffers from a lack of comparative...
متن کاملAN EXTENDED FUZZY ARTIFICIAL NEURAL NETWORKS MODEL FOR TIME SERIES FORECASTING
Improving time series forecastingaccuracy is an important yet often difficult task.Both theoretical and empirical findings haveindicated that integration of several models is an effectiveway to improve predictive performance, especiallywhen the models in combination are quite different. In this paper,a model of the hybrid artificial neural networks andfuzzy model is proposed for time series for...
متن کاملFunctional-Coefficient Autoregressive Model and its Application for Prediction of the Iranian Heavy Crude Oil Price
Time series and their methods of analysis are important subjects in statistics. Most of time series have a linear behavior and can be modelled by linear ARIMA models. However, some of realized time series have a nonlinear behavior and for modelling them one needs nonlinear models. For this, many good parametric nonlinear models such as bilinear model, exponential autoregressive model, threshold...
متن کامل